

Title

 LooterLand
Technical Design Document

 Index

1. Summary
1.1. Technical Game Description
1.2. Feel of Gameplay
1.3. Game Systems Simplicity

2. Technical Goals

2.1. Inventory
2.2. Highscore system
2.3. Responsive Input

3. Technical Risks
3.1. Random Item Spawning
3.2. Animations
3.3. Hazards

4. Code Style
 4.1. Naming Rules
 4.2. Variables
 4.3. Conditions

 4.4. Classes and Structs
 4.5. Scripts and ScriptableObjects

5. Commit Policy
5.1. Commit Naming Conventions
5.2. Branching and Merging

Summary

1.1. Technical Game Description
 LooterLand is a game where a player moves around a
level and picks up items while being chased by store
employees. The objective of the game is to get as many
points (money) as possible before the game timer runs out.
The camera overviews the game and will always be rotated
facing north of the map and above the Player so that the
game is in a third-person view.

1.2. Feel of Gameplay

The feel of the game is supposed to arcade-like, having
a low-poly graphics style that games during the ps1 era of
games looked. The style of gameplay should be quick and
and chaotic.
1.3. Game Systems Simplicity

The game mechanics and systems are made to feel
simplistic, and not overly diverse so that the Player can
focus on the main objective, and not be distracted or
overwhelmed by other implemented systems.

Technical Goals

2.1. Inventory
The player will have an infinite inventory where

items are converted into cash upon pickup. If the
player is hit by a cop, they will drop generic grocery bag
items that store a portion of the wealth the player had
collected.

2.2. Highscore system

A total amount of cash accumulated will be
calculated as the game is playing. Once the end state
is reached, this value will be displayed to the Player so
that they can compare this “run” with other runs they or
other Players had played. This will be done by adding
the value of the item to the total count during
gameplay.

2.3. Responsive Input

Using input keys to perform actions and begin
animations should feel quick and snappy. Smoothness
can be sacrificed to give the game a videogame-like
feel and allow the Player to perform actions instantly.

Technical Risks

3.1. Random Item Spawning
 To make the game more fun, and to add replayability
to the game, items will be randomly placed in random
locations in the store. The “electronics section” (the top
right corner of the map) has a higher chance of
spawning rare and uncommon items.

3.2. Animations

 To make the game feel alive, the Player will have
animations for moving around the world, cops will also
have their own animations to indicate states that the
cop is in.

3.3. Hazards

 Throughout the store, there are spills of various
substances that apply different effects upon the Player
and Cops. There are water puddles, spilled Wizard
Speed cans, and sticky floor spots.

Code Style

4.1. Naming Rules
 Functions, scripts, and scriptable objects should be
named with PascalCase. Scriptable objects also
should have SO immediately after the name of the
object.

4.2. Variables

 Public variables should be named with PascalCase.
Private variables should have the prefix “_” followed
with the name of the variable in camelCase.

4.3. Conditions
 Conditionals will be formatted preferably as shown
below:

 if (condition) {}

Rather than

if (condition == true) {}

 The use of guard clauses rather than large nested
blocks within if/else statements will also be preferred
use. Example of this is as follows:

if (!condition) return;

Rather than

 if (condition) { // Large block of code // }

Prefer long conditionals to be on multiple lines:

if (condition1 ||

 condition2 ||

 condition3 ||

 etc) { }

4.4. Classes and Structs

 Prefer structs and Scriptable Objects to be used more
for data storage and classes for functionality.

 Prefer classes to always have a default, zero argument
constructor (or constructor where all arguments have
default values) in addition to any others such that all
classes can be instantiated without passing arguments
unless strictly necessary.

4.5. Scripts and ScriptableObjects

The title of Scripts/Behaviors should briefly
describe what the Script does. Prefer for the title of the
Script to not include “Script” or “Behavior” after the title
of the name.

Example: Movement : MonoBehaviour

All ScriptableObjects scripts will end with SO also

using PascalCase.
Example: PlayerDataSO:

Commit Policy

5.1. Commit Naming Conventions
 Any and all commit messages should be descriptive

as possible. Commit messages should begin with a prefix,
followed by a description describing the purpose of the
commit with details of each change made.

Prefix Examples:
- fix: Player movement script now stays at the last

rotation angle.
- feat: Added slot selection to inventory system.
- chore: Forgot to save updated script for current

scene file.
- docs: Added Documentation entry for

CameraMovementBehavior.

5.2. Branching and Merging

Each contributor to the source code and project must
work and commit into their own branch that branches off
from main/dev. A single contributor should never make the
decision to push into main, once changes have been
reviewed to the team, push to dev. Once a contributor has

completed working-changes that they are confident in to
their branch, they must show it to the team so that
everyone can review it and agree to push it to dev. Once
reviewed changes from all contributors are gathered in dev,
all of the changes should be tested and conflicts/bugs
should be resolved there in a separate branch. Once testing
and bug fixing has been completed and the new version of
the project has been reviewed, then the team should do a
pull request to put the changes on the main branch.

	Title
	Technical Design Document
	 Index
	
	
	Summary
	Technical Goals
	Technical Risks
	Code Style
	
	Commit Policy

